Implementation of K-Means Clustering in Poverty Analysis of Regency/City in Sumatera Island in 2023
Main Article Content
Siti Nur Fadilah
Dedy Yuliawan
This study seeks to examine poverty across the regencies and cities on Sumatra Island in 2023 by employing the K-Means Clustering approach. Poverty represents a complicated and multi-faceted societal challenge, shaped by various elements including educational attainment, joblessness, income per capita, and spending per capita. The information utilized in this analysis is sourced from the Central Bureau of Statistics, specifically the proportions of impoverished individuals, average duration of education, rates of open unemployment, income per capita, and expenditure per capita. Findings reveal the establishment of three distinct clusters based on poverty attributes: Cluster 1 exhibiting a low poverty level, Cluster 2 displaying a moderate poverty level, and Cluster 3 indicating a high poverty level. Results from the One Way Anova test indicate notable differences in poverty traits across the clusters. It is anticipated that this research will aid the government in developing more suitable and effective strategies for tackling poverty in regions grappling with significant poverty challenges.
Amalia, F., & Emalia, Z. (2022). Fenomena Kelimpahan Sumber Daya Alam dan Natural Resource Curse Dalam Perspektif Ekonomi Di Pulau Sumatera. BULLET : Jurnal Multidisiplin Ilmu, 01(5), 737–750.
Ayudia, N., Ciptawaty, U., Wahyudi, H., Yuliawan, D., & Ratih, A. (2024). Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan pada Daerah Tertinggal di Pulau Sumatera Berdasarkan Tipologi Klassen. Journal on Education, 06(03), 17112–17121.
BPS. (2024). Persentase Penduduk Miskin (PO) Menurut Kabupaten/Kota (Persen), 2022-2024. Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/NjIxIzI%253D/persentase-penduduk-miskin--p0--menurut-kabupaten-kota.html
Damanik, R. K., & Sidauruk, S. A. (2020). Pengaruh Jumlah Penduduk Dan Pdrb Terhadap Kemiskinan Di Provinsi Sumatera Utara. Jurnal Darma Agung, 28(3), 358. https://doi.org/10.46930/ojsuda.v28i3.800
Dito, B. S. dan G. A. (2020). KMeans. RPubs By RStudio. https://rpubs.com/bagusco/kmeans
Feriyandri, P. D., & Maimunah, E. (2023). Pengaruh Angkatan Kerja dan Investasi terhadap Produk Domestik Regional Bruto di Provinsi Lampung. Journal on Education, 6(1), 8122–8133. https://doi.org/10.31004/joe.v6i1.4230
Hair J, R, A., Babin B, & Black W. (2009). Multivariate Data Analysis (Seven Ed). In Pearson: Vol. 7 edition (p. 761).
Hanifah, F. A. (2023). Penggunaan Analisis One-Way ANOVA Pada Kasus Pengujian Pertumbuhan Produksi Maggot Melalui Kombinasi Sampah Rumah Tangga dan Daun Kering. RPubs By RStudio. https://rpubs.com/fitriaamalia/miniprojectkomstat
Hidayat, A. (2022). Klasterisasi Penyebaran Covid-19 di Indonesia Berdasarkan Provinsi Menggunakan K-Means Cluster. RPubs By RStudio. https://rpubs.com/Anoe/lbb-kmeans
Mayasari, S. N., & Nugraha, J. (2023). Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten/Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 3(2), 317–329. https://doi.org/10.24002/konstelasi.v3i2.7200
Najih. (2024). Uji Tukey/ Honest Significantly Difference/ Uji Beda Nyata Jujur. RPubs By RStudio. https://rpubs.com/najih/UjiTukey
Ostertagová, E., & Ostertag, O. (2013). Methodology and Application of Oneway ANOVA. American Journal of Mechanical Engineering, 1(7), 256–261. https://doi.org/10.12691/ajme-1-7-21
Rafiqi, A. (2020). Pengaruh Rata-rata Lama Sekolah, Pengeluaran Riil Perkapita, Pertumbuhan Ekonomi dan Pengangguran Terhadap Tingkat Kemiskinan di Provinsi D.I Yogyakarta. Skripsi.
Salsabila, R. (2020). Pengaruh Kemiskinan dan Pengeluaran Pemerintah Dalam Sektor Pendidikan Terhadap Indeks Pembangunan Manusia di Wilayah Sumatera. Skripsi, 7(2).
Zaqiah, A., Triani, M., & Yeni, I. (2023). Pengaruh Pendidikan, Pengangguran dan Jumlah Penduduk Terhadap Tingkat Kemiskinan di Indonesia. Jurnal Kajian Ekonomi Dan Pembangunan, 5(3), 33. https://doi.org/10.24036/jkep.v5i3.15284