Dynamic Modeling Analysis of Paddle Aerator Performance on Litopenaeus vanamei Ponds
Main Article Content
Paddle aerator is an important tool in intensive shrimp farming. The purpose of this study is to determine the performance and electrical power consumption of paddle aerators based on the results of dynamic modelling analysis. This study uses causal ex-pose facto design concept with data analysis using dynamic modelling system. The results showed the salinity levels of pond 1 20-27 gr/L and pond 2 31-33 gr/L, pH pond 1 7.9-9.0 and pond 2 8.1-8.3, DO concentration pond 1 4.43-6.93 mg/L and pond 2 4.72-5.99 mg/L, temperature pond 1 27.15-31.400C with a brightness of 43 cm and pond 2 ranging from 27.50-29.850C with a brightness of 49 cm. From the calculation of the level of oxygen production paddle aerator power 1 HP produces oxygen average 2.12 mgO2 / hour (1.68-2.89 mgO2 / hour) with gas pressure 10.31-16.00 mmHg and paddle aerator power 2 HP produces oxygen average 3.20 mgO2 / hour (2.82-3.65 mgO2 / hour) with gas pressure 10.05-14.56 mmHg. From the accumulated results, the electrical load power required for pond 1 is about 6.83-10.38 kW and pond 2 is about 6.59-7.71 kW. The performance of 1 HP paddle aerator is more effective than 2 HP paddle aerator 4 pieces. The results of dynamic model analysis estimated the level of dissolved oxygen production by paddle aerators during one cultivation cycle ranged from 1-2.70 mgO2/hours and 1-2.75 mgO2/hours with a rotational speed of 0-30 rpm/s and power requirements of 8-10 kW. The conclusion from the results of this study is that the use of 1 HP paddle aerators in large quantities is proven to be more effective and based on the results of dynamic modelling system analysis, it is shown that the performance of DO production by paddle aerators will stagnate at week ten of the cultivation period, with increasing electrical power requirements.
M Ozaki, Y. Adachi, Y. Iwahori, and N. Ishii. (1998). Application of fuzzy theory to writer recognition of Chinese characters, International Journal of Modelling and Simulation, 18(2), 112-116.
AftabUddin, S., M.A.M. Siddique, A. Sein, P.K. Dey, M.R.U. Nabi, M.A. Haque. (2020). First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquaculture Reports, 18, 100518.
Ahmed, M.A., M.I. Alam, S. Debnath, A.O. Debrot, M.M. Rahman, M.N. Ahsan, M.C.J. Verdegem. (2023). The impact of mangroves in small-holder shrimp ponds in south-west Bangladesh on productivity and economic and environmental resilience. Aquaculture, 571, 739464.
Aljufri., R. Syarlian, A. Abizar, A. Setiawan. (2021). Preliminary design of shrimp pond paddle wheel powered by solar energy. Jurnal Polimesin, 19(1), 1-6.
Araneda, M., E.G. Leyva, M.A. Vela, R.D. May. (2020). Effects of temperature and stocking density on intensive culture of Pacific white shrimp in freshwater. Journal of Thermal Biology, 94, 102756.
Ariadi, H. (2019). Konsep Pengelolaan Budidaya Udang Vannamei (Litopenaeus vannamei) Pola Intensif Berdasarkan Tingkat Konsumsi Oksigen Terlarut. Master diss., Universitas Brawijaya, Malang.
Ariadi, H. (2020). Oksigen Terlarut dan Siklus Ilmiah Pada Tambak Intensif. Bogor: Guepedia.
Ariadi, H., M. Fadjar, M. Mahmudi. (2019). The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquaculture, Aquarium, Conservation & Legislation, 12(6), 2103-2116.
Ariadi, H., A. Wafi, M. Fadjar, M. Mahmudi. (2020). Tingkat Transfer Oksigen Kincir Air Selama Periode Blind Feeding Budidaya Intensif Udang Putih (Litopenaeus vannamei). JFMR (Journal of Fisheries and Marine Research), 4(1), 7-15.
Ariadi, H., A. Wafi, B.D. Madusari. (2021). Dinamika Oksigen Terlarut (Studi Kasus Pada Budidaya Udang). Indramayu: Penerbit ADAB.
Ariadi, H., A. Wafi, M. Musa, Supriatna. (2021). Keterkaitan hubungan parameter kualitas air pada budidaya intensif udang putih (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan, 12(1), 18-28.
Ariadi, H., A. Wafi, Supriatna, M. Musa. (2021). Tingkat difusi oksigen selama periode blind feeding budidaya intensif udang vaname (Litopenaeus vannamei). Rekayasa, 14(2), 152-158.
Bai, X., Leitao, E.E.S. Anna, R. Schwamborn, A.T.M. Junior. (2018). Effects of paddle wheel aerator rotation speed on oxygen transfer efficiency. Journal of Environmental Management, 21, 145-153.
Boyd, C.E. (1998). Pond water aeration systems. Aquacultural Engineering, 18, 9-40.
Boyd, C.E., and A.A. McNevin. (2020). Aerator energy use in shrimp farming and means for improvement. Journal of the World Aquaculture Society, 1-24.
Brown, T.W., and C.S. Tucker. (2014). Pumping Performance of a Modified Commercial Paddlewheel Aerator for Split-Pond Aquaculture Systems. North American Journal of Aquaculture, 76(1), 72-78.
Brown, T.W., C.S. Tucker, B.L. Rutland. (2016). Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems. Aquacultural Engineering, 70, 33-41.
Case, M., E.E. Leca, S.N. Leitao, E.E.S. Anna, R. Schwamborn, A.T.M. Junior. (2008). Plankton community as an indicator of water quality in tropical shrimp culture ponds. Marine Pollution Bulletin, 56, 1343-1352.
Castillo, L.F.D., A.R.F. da Silva, S.I. Hernandez, M. Aguilella, A. Andrio, S. Molla, V. Compan. (2015). Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear. Journal of Optometry, 8(1), 12-18.
Chen, Y., C. Zhu, J. Su, J. Li, S. Chen, J. Qin. (2019). Impact of paddle design on aeration efficiency in aquaculture ponds. Aquacultural Engineering, 21, 187-198.
Choi, B., T.Y. Jeong, S. Lee. (2021). Application of jetventurimixer for developing low-energy-demand and highly efficient aeration process of wastewater treatment. Heliyon, 8(10), e11096.
Dalla Santa, K., and L. Vinatea. (2007). Evaluation of respiration rates and mechanical aeration requirements in semi-intensive shrimp Litopenaeus vannamei culture ponds. Aquacultural Engineering, 36(1), 73-80.
Dayioglu. (2022). Experimental study on design and operational performance of solar-powered venturi aeration system developed for aquaculture – A semi-floating prototype. Aquacultural Engineering 98, , 102255.
de Morais, A.P.M., P.C. Abreu, W.W. Junior, D. Krummenauer. (2020). Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture, 514, 734516.
Delgado, P.C., Y. Avnimelech, R. McNeil, D. Bratvold, C.L. Browdy, P. Sandifer. (2003). Physical, chemical and biological characteristics of distinctive regions in paddlewheel aerated shrimp ponds. Aquaculture, 217, 235-248.
García, S., D.R. Teichert-Coddington, D.B. Rouse. (2015). Aeration efficiency of paddle wheel aerators in aquaculture. Aquaculture Research, 30, 1-19.
Hasan, N.A., M.M. Haque, S.J. Hinchliffe, J.Guilder. (2020). A sequential assessment of WSD risk factors of shrimp farming in Bangladesh: Looking for a sustainable farming system. Aquaculture, 526, 735348.
Hopkins, J.S., A.D. Stokes, C.L. Browdy, P.A. Sandifer. (1991). The relationship between feeding rate, paddlewheel aeration rate and expected dawn dissolved oxygen in intensive shrimp ponds. Aquacultural Engineering, 10, 281-290.
Iber, B.T., dan N.A. Kasan. (2021). Recent advances in Shrimp aquaculture wastewater management. Heliyon, 7(11), e08283.
Itano, T., T. Inagaki, C. Nakamura, R. Hashimoto, N. Negoro, J. Hyodo, S. Honda. (2019). Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture. Aquacultural Engineering, 85, 106-113.
Kazemzadeh et al. (2020). Mass transfer in a single-use angled-shaft aerated stirred bioreactor applicable for animal cell culture. Chemical Engineering Science, 15606.
Kitazawa, D., and J. Zhang. (2016). Measurement of water current field created by paddle wheel aerators in shrimp culture pond. Oceans, 2016, 1-4.
Koyama, M., N. Nagao, F. Syukri, A.A. Rahim, T. Toda, Q.N.M. Tran, K. Nakasaki. (2020). Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. Journal of Cleaner Production, 251, 119718.
Lee, H., Y. Zhang, D.Y.F. Lai, L. Tan. (2020). The influence of water depth on paddle aerator performance. Water Research, 10, 1-17.
Li, T., B. Zhang, C. Zhu, J. Su, J. Li, S. Chen, J. Qin. (2021). Effects of an ex situ shrimp-rice aquaponic system on the water quality of aquaculture ponds in the Pearl River estuary, China. Aquaculture, 545, 737179.
Luo et al. (2023). A comparative study on effects of dietary three strains of lactic acid bacteria on the growth performance, immune responses, disease resistance and intestinal microbiota of Pacific white shrimp, Penaeus vannamei. Fish & Shellfish Immunology, 136, 08707.
McGraw, W., D.R. Teichert-Coddington, D.B. Rouse, C.E. Boyd. (2001). Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture, 199, 311–321 .
Moore, J.M., and C.E. Boyd. (1992). Design of small paddle wheel aerators. Aquacultural Engineering, 11(1), 55-69.
Moulick, S., B.C. Mal, S. Bandyopadhyay. (2002). Prediction of aeration performance of paddle wheel aerators. Aquacultural Engineering, 25(4), 217-237.
Nunes, J., R. McNeil, D. Bratvold, C.L. Browdy, P. Sandifer. (2021). Paddle aerator effects on fish growth in aquaculture. Fish Physiology and Biochemistry, 10, 1762-1776.
Peterson, E.L., L.C. Wadhwa, J.A. Harris. (2001). Arrangement of aerators in an intensive shrimp growout pond having a rectangular shape. Aquacultural Engineering, 25(1), 51-65.
Robinson, P.T., and M.F. Zhou. (2008). The origin and tectonic setting of ophiolites in China. Journal of Asian Earth Sciences, 32, 301–307.
Saha, R., S.N. Leitao, E.E.S. Anna, R. Schwamborn. (2022). Paddle aerators in wastewater treatment: A review. Journal of Hazardous Materials, 14, 173-187.
Samocha. (2019). Sustainable Biofloc Systems for Marine Shrimp. Massachusetts, USA: Academic Press.
Soeprapto et al. (2023). The dynamics of Chlorella spp. abundance and its relationship with water quality parameters in intensive shrimp ponds. Biodiversitas Journal of Biological Diversity 24(5), 2919-2926.
Tanveer, M., Roy, S.M. M. Vikneswaran, P. Reanganathan, S. Balasubramanian. (2018). Surface aeration systems for application in aquaculture: A review . International Journal of Fisheries and Aquatic Studies, 6(5), 342-347 .
Tien, N.N., R. Matsuhashi, V.T.T.B. Chau. (2019). A Sustainable Energy Model for Shrimp Farms in the Mekong Delta. Energy Procedia, 157, 926-938.
Torun, F., B. Hostins, P.D. Schryver, N. Boon, J.D. Vrieze. (2022). Molybdate effectively controls sulphide production in a shrimp pond model. Environmental Research, 203, 111797.
Wafi, A., and H. Ariadi. (2022). Estimasi Daya Listrik Untuk Produksi Oksigen Oleh Kincir Air Selama Periode “Blind Feeding” Budidaya Udang Vaname (Litopenaeus vannamei). Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, 18(1), 19-25.
Wafi, A., H. Ariadi, A. Muqsith, M. Mahmudi, M. Fadjar. (2021). Oxygen consumption of Litopenaeus vannamei in intensive ponds based on the dynamic modeling system. Journal of Aquaculture and Fish Health, 10(1), 17-24.
Whangchai, N., V.P. Miogo, C.G. Alfafara, H.K. Young, N. Nomura, M. Matsumura. (2004). Strategies for alkalinity and pH control for ozonated shrimp pond water. Aquacultural Engineering, 30, 1-13.
Xiao, Z., L. Peng, Y. Chen, H. Liu, J. Wang, Y. Nie. (2017). The Dissolved Oxygen Prediction Method Based on Neural Network. Hindawi Complexity, 1-6.
Yang, P., Y. Zhang, D.Y.F. Lai, L. Tan, B. Jin, C. Tong. (2018). Fluxes of carbon dioxide and methane across the water–atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity and nitrate. Science of The Total Environment, 635, 1025-1035.